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ABSTRACT

The purpose of this note is to discuss the model matching performance of

the adaptive control algorithm suggested by Peterson and Narendra in

reference [1].
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INTRODUCTION

Following the excitement over the global stability properties of model reference

adaptive control (MRAC) algorithms, during the past two years several researchers,

[1] to [5], have been investigating the robustness of MRAC algorithms to unmodeled and

unmeasurable disturbances and/or unmodeled high-frequency dynamics. It is now widely

appreciated that standard MNRAC algorithms can become unstable if there exist persistent

errors (which may be indu-ed by persistent disturbances). The presence of persistent

errors, coupled with the adaptive gain mechanism of MRAC algorithms, cause "drifts"

in the adaptive gain parameters, which in turn increase the control bandwidth thereby

exciting the unmodeled high frequency dynamics and resulting in an unstable control

system.

The research of Peterson and Narendra (1] deals with the problem of minimizing the

effect of unmeasurable disturbances upon the drift of the adaptive gain parameters; it

does not deal with the presence of the inevitable unmodeled dynamics. The basic idea

in [1] is to introduce a dead zone nonlinearity in the output error channel, so that

small errors due to the disturbances will not "confuse" the adaptive control gain setting

mechanism. This is certainly a good idea; Peterson and Narendra [1] present the neces-

sary analysis to establish the boundedness of all signals in the adaptive control loop,

and infer stability for the direct control configuration. The same notion has been ap-

plied to identification algorithms used for indirect configurations [6,71.

The purpose of this note is to examine issues of performance of the resulting

adaptive control system using the simulation results presented in Section IV, Fig. 6

by Peterson and Narendra (1]. The published simulation results confirm the claim that

the inclusion of the dead-zone leads to bounded steady-state control gains in the presence

e , [iml i .... . .. . .. . .r.. .
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of disturbances while in the absence of the dead-zone the control gain parameters

could drift (see Fig. 6(a) in (1]).

However, the performance of the bounded error adaptive control scheme has yet to

be evaluated. There are many ways by which one could examine the performance of an

adaptive control system, and there does not seem to be any agreement on their rank-

ordering and performance. In this note we study a particular measure of performance,

namely the ability of the adaptive control scheme to "match" the dynamics of the model

transfer function once control parameter convergence has taken place. We believe that

this is a more relevant and meaningful measure of performance than simple output

matching. In the absence of sufficiently rich excitation for good parameter matching,

it is possible in the disturbance free case to obtain exact output matching between

plant and model for a particular reference signal with very poor parameter matching.

If another reference signal is then applied, output tracking is established only after

a transient period of adaptation. If, on the other hand, parameter matching had been

achieved with the original reference signal, output tracking for the next signal would

have been automatic and instantaneous.

Of course, in the case of additive output disturbances, output matching is impossible

even with exactly known control parameters. The philosophy of employing a dead zone in

the parameter update law is to recognize this problem and to avoid compounding it via

futile attempts at disturbance rejection by means of parameter variation. Such attempts

may well lead to overall instability of the MRAC system (2].

NUMERICAL STUDIES

The numerical results of Peterson and Narendra [1] assume that the model transfer

function is
1 1

s4(s) - 2 (s)(s.3)
s +4s+3
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The plant to be controlled has the open-loop transfer function

W Cs) - = (sl(-)(2)

Wp (sl) (s1(-i)

Figure I (not included in (1]) shows the structure of the adaptive control system. The

structure of Fig. 1 can be deduced from the general equations given in [1]; the three
adaptive control gains 01, e2 and 03 form the parameter vector re = e [ el2 3T and

are adjusted on the basis of the signal n(t) at the dead zone output. When adaptation

has proceeded to the point when the magnitude of e(t) is upper bounded by the dead zone

cutoff v +6, we have n(t)=O and 8(t)=O. This results in '(t)=O and leaves the compensated

plant transfer function as

Yp(s) 
(s+23)r(s) s +(2.81)s 2_(l+8 .62.29 .2(

Straightforward algebra confirms that the vector of parameters giving correct model

matching (in the absence of the disturbance v1) is

_ *T - [-4, 12 ,. 12]T (4)

Using Eq. (4), the compensated plant transfer function (3) reduces to

P s aW (s)- (se2) 1S
r(s) m (s.2) (sel) (s.3) (s+1) (3.3)()

Next we compare the correct e* with the steady state e parameter vectors

shown in the simulation figures 6c,d,e of [1].

From figure 6c of [I] we have

8 s s [-0.2,-8.0,-12.2] T (6)
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and therefore the adaptation has converged to the transfer function

y (S) s+2
r(s)= (s+2.52)(s-.16+j3.46)(s-.16-j3.46) (7)

which has two lightly damped poles in the right half plane. The results in figure

6d of [1] yield

-s = -2.1,-9.2,-12.3]T (8)

which corresponds to the transfer function

y (s) s+2

= (s+3.36)(s+.37+j2.95)(s+.37-j2.g5) (9)

The result of figure 6e in (1] yield

ess = [-0.6,-10.2,- 17 .0]T (10)

which corresponds to the transfer function

y (s) s+2 (11)

= (s+2.6) (s+j4) (s-j 4)

We would expect the result depicted in figure 6e to be "best" in the sense of

model matching since this simulation employs the smallest dead zone and the richest

input. (Unfortunately, the rich input is not defined). In all cases, however, the

resultant system is very lightly damped and cannot be considered a very good approxima-

tion to the model W m (s) it seeks to match. In the case of figure 6c in particular,

the compensated plant transfer function (7) is that of an unstable system. This result

appears inconsistent with the error time history shown.
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CONCLUDING RARKS

lie can only conclude, based on the findings reported in [l], that when viewved

from the perspective of model matching performance, the results of adaptive controller

design with a dead zone non-linearity in the parameter update law are presently of

limited practical value. The theoretical importance of guaranteed state boundedness

in the presence of persistent disturbances is a step in the right direction. This

development should inspire work aimed at improved model matching in the presence of

persistent disturbances as well as under conditions of imperfect model-plant structural

matching due to the presence of high order unmodeled dynamics.
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Figure 1: The structure of the adaptive control system for the numerical example
presented in Ref. (1]. The adjustment mechanism for the adaptive control
gains 1f 2' and *. is not shown.
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